# 238 High Current Source-Measure Unit

SOURCE-MEASURE UNIT: Sources voltage while measuring current, or sources current while measuring voltage.

FUNCTION: Can be used as DC source or meter, sweep source, or full source-measure unit.

# SOURCE-DELAY-MEASURE CYCLE:



Default Delay: Fixed delay for instrument settling.

**User Delay:** Additional delay for device under test or system capacitance.

# MEASURE:

## Integration Time

| meeg- union min | •                |                    |
|-----------------|------------------|--------------------|
| Fast            | 416 µs           | 4-digit resolution |
| Medium          | 4 ms             | 5-digit resolution |
| Line Cycle      | 16.67 ms (60 Hz) | 5-digit resolution |
|                 | 20.00 ms (50 Hz) |                    |

Elapsed Time: Measures and stores time from sweep trigger to measurement complete for each step of sweep.

#### **RANGING:**

- **Source:** Auto-ranging through keypad entry; fixed range selection using rotary dial and SELECT keys (DC function). Fully programmable in SWEEP function.
- **Measure:** Auto or fixed range. Fixed range selection made by choice of COMPLIANCE value.
- **FILTER:** Takes n measurements, calculates and outputs average (n = 2, 4, 8, 16, or 32, selectable).
- SUPPRESS: Subtracts displayed measurement from subsequent readings.
- MENU: DC Measurement Delay, Default Delay On/Off, Local/Remote Sense, 50/60Hz, IEEE Address, Self Tests.

DATA ENTRY: Numeric keypad or detented rotary dial.

### TRIGGER:

- **Input and Output:** Set for any phase of SOURCE-DELAY-MEASURE sequence or trigger output at end of sweep.
- **Origin:** Internal, External (including front panel MANUAL TRIGGER button), IEEE-488 bus (TALK, GET, "X").
- **MEMORY:** Stores one full sweep (up to 1000 points) of source, delay, and measure values, elapsed times, and sweep parameters. Lithium battery backup.
- **INTERLOCK:** Use with test fixture or external switch. Normally closed; open puts instrument in standby.

# **SWEEP WAVEFORMS**





Logarithmic Stair





Linear Stair Pulse



WAVEFORM OPERATORS

# DESCRIPTION

LEVEL, COUNT (number of DELAY-MEASURE cycles), DELAY, BIAS

## START, STOP, STEP, DELAY, BIAS

START, STOP, POINTS/DECADE (5, 10, 25, or 50), DELAY, BIAS

LEVEL, COUNT,  $\mathrm{T}_{\mathrm{ON}}$ ,  $\mathrm{T}_{\mathrm{OFF}}$ , BIAS

START, STOP, STEP, T<sub>ON</sub>, T<sub>OFF</sub>, BIAS

START, STOP, POINTS/DECADE (5, 10, 25, or 50), T<sub>ON</sub>, T<sub>OFF</sub>, BIAS

# DESCRIPTION

Allows selection of waveform parameters. Generates all source values.

Combines multiple waveforms and adds new points to those already in memory.

Select and change any points in a previously created (or appended) waveform.



Create



# 238 High Current Source-Measure Unit

| VOLTAGE SOURCEV |   | MEASUREV                 |        |                                   |        |                  |                                                                           |
|-----------------|---|--------------------------|--------|-----------------------------------|--------|------------------|---------------------------------------------------------------------------|
|                 |   | RANGE<br>(Max.<br>Value) | STEP   | ACCURACY<br>(1 Year,<br>18°-28°C) | RESOL  | UTION<br>5-Digit | ACCURACY <sup>1</sup><br>(1 Year,<br>18°-28°C)                            |
| -               | ŧ | ±1.5000 V                | 100 μV | $\pm (0.033\% + 800 \mu V)^2$     | 100 μV | 10 μV            | $\pm (0.028\% + 450\mu V)^{2}$<br>$\pm (I_{-}/I_{}] \times 600\mu V)^{2}$ |
|                 | ł | ±15.000 V                | 1 mV   | $\pm (0.033\% + 2.7mV)$           | 1 mV   | 100 µV           | $\pm (0.025\% + 1.3 \text{mV})^2$                                         |
|                 | - | +110.00 V                | 10 mV  | +(0.033% + 24mV)                  | 10 mV  | 1 mV             | +(0.025% + 10mV)                                                          |

 $I_0$  = Output current;  $I_{ES}$  = Full scale on selected current range

 $^1$  Specifications apply for 5-digit resolution. For 4-digit resolution add 100ppm of range. Assumes remote sense for I > 100  $\mu A.$ 

 $^2\,$  On the 1A range use  $[I_O/I_{FS}]\,{\times}\,250\mu\text{V}{.}$ 

**COMPLIANCE:** Bipolar current limit set with single value. **Maximum:** ±1A (±100mA on 110V range).

Minimum: ±1% of selected voltage range.

Accuracy, Step Size: Same as current source.

#### NOISE (p-p typical):

| RANGE | 0.1–10Hz        |
|-------|-----------------|
| 110 V | < 3ppm of range |
| 15 V  | < 3ppm of range |
| 1.5V  | <10ppm of range |

WIDEBAND NOISE: 0.1 to 20MHz, 8mV p-p typical. OVERSHOOT: <0.01% (110V step, 10mA range).

SETTLING TIME: <500µs to 0.01% (110V step, 10mA range). NMRR: >60dB at 50 or 60Hz (LINE CYCLE integration time selected). CMRR: >120dB at DC, 50 or 60Hz (LINE CYCLE integration time selected).

**INPUT IMPEDANCE (as a voltmeter):** >10<sup>14</sup> $\Omega$  paralleled by <20pF.

| CURRENT        | SOURCE | I                    |         | MEASUI  | REI                                 |
|----------------|--------|----------------------|---------|---------|-------------------------------------|
| RANGE<br>(Max. | STEP   | ACCURACY<br>(1 Year, | RESOL   | UTION   | ACCURACY <sup>1,2</sup><br>(1 Year, |
| Value)         | SIZE   | 18°–28°C)            | 4-Digit | 5-Digit | 18°-28°C)                           |
| ±1.0000 nA     | 100 fA | ±(0.3 %+ 450 fA)     | 100 fA  | 10 fA   | $\pm (0.3 \ \% + 100 \ fA)^2$       |
| ±10.000 nA     | 1 pA   | ±(0.3 %+ 2 pA)       | 1 pA    | 100 fA  | $\pm (0.3 \% + 1 \text{ pA})$       |
| ±100.00 nA     | 10 pA  | ±(0.21%+ 20 pA)      | 10 pA   | 1 pA    | ±(0.21 % + 6 pA)                    |
| ±1.0000 µA     | 100 pA | ±(0.05%+200 pA)      | 100 pA  | 10 pA   | $\pm (0.04 \% + 6 \text{ pA})$      |
| ±10.000 µA     | 1 nA   | ±(0.05%+ 2 nA)       | 1 nA    | 100 pA  | $\pm (0.035\% + 700 \text{ pA})$    |
| ±100.00 µA     | 10 nA  | ±(0.05%+ 20 nA)      | 10 nA   | 1 nA    | $\pm (0.035\% + 6 \text{ nA})$      |
| ±1.0000 mA     | 100 nA | ±(0.05%+ 200 nA)     | 100 nA  | 10 nA   | $\pm (0.035\% + 60 \text{ nA})$     |
| ±10.000 mA     | 1 µA   | ±(0.05%+ 2 μA)       | 1 µA    | 100 nA  | $\pm (0.038\% + 600 \text{ nA})$    |
| ±100.00 mA     | 10 µA  | ±(0.1 %+ 20 µA)      | 10 µA   | 1 μA    | $\pm (0.1 \% + 6 \mu A)$            |
| ±1.0000 A      | 100 µA | ±(0.12%+ 700 μA)     | 100 µA  | 10 µA   | $\pm (0.12 \% + 300 \mu A)$         |

<sup>1</sup> Specifications apply for 5-digit resolution. For 4-digit resolution, all offset terms are 200ppm of range.

<sup>2</sup> Offset specification applies for 23°C ± 1°C with suppression. Temperature coefficient 50fA/°C.

COMPLIANCE: Bipolar voltage limit set with single value.

Maximum: ±110V (±15V on the 1A range).

Minimum:  $\pm 1\%$  of selected current range.

Accuracy, Step Size: Same as voltage source.

NOISE (p-p of range): 0.1–10Hz: <3ppm (<20ppm on 1nA, 10nA and 1A ranges).

**OVERSHOOT:** <0.01% typical (10mA step,  $R_L = 10k\Omega$ ).

SETTLING TIME: <500 $\mu$ s to 0.01% (10mA step, R<sub>L</sub> = 10k $\Omega$ ).

**OUTPUT R, C:** >10<sup>14</sup> $\Omega$  paralleled by <20pF (on 1nA range).

# **EXECUTION SPEED**

MINIMUM SOURCE-DELAY-MEASURE CYCLE TIME: 1ms. RESPONSE TO IEEE-488 COMMAND (as a source): 25ms. MEASUREMENT RATE: 1ms per point into internal buffer.

CONTINUOUS MEASUREMENT SPEED (source DC value over IEEE-488 bus): 110 readings per second.

TRIGGER LATENCY TIME: <2ms.

## **IEEE-488 BUS IMPLEMENTATION**

MULTILINE COMMANDS: DCL, LLO, SDC, GET, GTL, UNT, UNL, SPE, SPD.

UNILINE COMMANDS: IFC, REN, EOI, SRQ, ATN.

- INTERFACE FUNCTIONS: SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT1, C0, E1.
- All front panel functions and setups are available over the IEEE-488 bus, in addition to Status, Service Request, Output Format, EOI, Trigger, and Terminator.

IEEE-488 address is set from the front panel menu.

## GENERAL

LOAD CAPACITANCE: Stable into 20,000pF typical.

**REMOTE SENSE:** Corrects for up to 2V drop in each output lead. Maximum  $lk\Omega$  per sense lead for rated accuracy. Residual output resistance (as a voltage source) is 0.5 $\Omega$ .

**GUARD:Output Resistance:**  $\leq 12k\Omega$ .

Maximum Output Current: ±2mA.

Open Circuit Offset Relative to Output HI: ±2mV max.

ISOLATION (Output LO to chassis): Typically >10<sup>10</sup> $\Omega$  in parallel with 650pF.

MAXIMUM COMMON MODE VOLTAGE: 200V peak.

CONNECTORS:Outputs: 3-lug triax.

Trigger Input/Output: BNC.

Interlock: 3-pin miniature DIN.

**TEMPERATURE COEFFICIENT (0°–18°C & 28°–50°C):** ±(0.1 × applicable accuracy specification)/°C.

#### **ENVIRONMENT:**

**Operating:** 0°–50°C, 70% relative humidity up to 35°C. Linearly derate 3% RH/°C, 35°–50°C.

Storage: -25° to 65°C.

WARM-UP: One hour to rated accuracy.

**COOLING:** Internal fan forced air cooling.

POWER: 105–125 or 210–250V AC (external switch selectable), 90– 110V and 180–220V version available. 120VA max.

DIMENSIONS, WEIGHT: 89mm high  $\times$  435mm wide  $\times$  448mm deep (3½ in  $\times$  17½ in  $\times$  17% in). Net weight 9kg (19.75 lb).

#### ACCESSORIES SUPPLIED:

Model 7078-TRX-10: Triax to Triax Cable, 3m (10 ft.) (2 supplied) Model 236-ILC-3: Interlock Cable

### ACCESSORIES AVAILABLE:

| Model 8000-10: | Equipment Rack for 3 SMUs (10 in.) |
|----------------|------------------------------------|
| Model 8000-14: | Equipment Rack for 4 SMUs (14 in.) |